主 要 学 术 成 果: (# 共同第一作者, *:通讯作者): lyu x#, li s#, jiang c, he n, chen z, zou y*, li l*. deepcso: a deep-learning network approach to predicting cysteine s-sulphenylation sites. frontiers in cell and developmental biology. 2020 8: 594587. (中科院二区) zhang l#, zou y#, he n, chen y, chen z*, li l*. deepkhib: a deep-learning framework for lysine 2-hydroxyisobutyrylation sites prediction. frontiers in cell and developmental biology. 2020 8: 580217. (中科院二区) zhao y, he n, chen z*, li l*. identification of protein lysine crotonylation sites by a deep learning framework with convolutional neural networks. ieee access. 2020 8: 14244-14252. (中科院二区) chen z, liu x, li f, li c, marquez-lago t, leier a, akutsu t, webb gi, xu d, smith ai,li l*, chou kc*, song j*. large-scale comparative assessment of computational predictors for lysine post-translational modification sites. briefings in bioinformatics. 2018 oct 4.(一区,if:5.3;蛋白质修饰深度学习建模) huang y#, he n#, chen y, chen z*,li l*. bermp: a cross-species classifier for predicting m6a sites by integrating a deep learning algorithm and a random forest approach. int j biol sci. 2018 14(12):1669-1677.(二区,if:4.3,rna修饰深度学习建模) ,,,,*,*. integration of a deep learning classifier with a random forest approach for predicting malonylation sites.2018 16(6):451-459.(一区,if:6.6,蛋白质修饰深度学习建模) bian y#,li l#, dong m#, liu x, kaneko t, cheng k, liu h, voss c, cao x, wang y, litchfield d, ye m*, li ss*, zou h*, ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. nat chem biol. 2016 12(11): 959-966.(nature 子刊,if: 13,蛋白质磷酸化修饰富集新方法及其在肿瘤靶向诊断中的应用) li l, wei y, to c, zhu cq, tong j, pham na, taylor p, ignatchenko v, ignatchenko a, zhang w, wang d, yanagawa n, li m, pintilie m, liu g, muthuswamy l, shepherd fa, tsao ms, kislinger t, moran mf*. integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact. nat communications. 2014 5:5469. (nature 子刊,if:11,肺癌大数据整合研究) zaman n#,li l#, jaramillo ml, sun z, tibiche c, banville m, collins c, trifiro m, paliouras m, nantel a, o'connor-mccourt m, wang e*. signaling network assessment of mutations and copy number variations predict breast cancer subtype-specific drug targets. cell reports. 2013, 5(1):216-23.(cell 子刊,if: 7,乳腺癌大数据整合研究以及应用于靶向药物筛选) li l#, tibiche c#, fu c, kaneko t, moran mf, schiller mr, li ss*, wang e*. the human phosphotyrosine signaling network: evolution and hotspots of hijacking in cancer. genome research. 2012, 22(7):1222-30.(一区,if:14,蛋白质磷酸化修饰信号网络研究及其在肿瘤网络中的特征) 荣誉: 2014年山东省泰山学者海外特聘专家 2019校研究生优秀导师 2009年国际人体蛋白质组会议年轻研究员奖 基金情况: 1. 国家自然科学基金面上项目(32071430)58万,2021-2024; 2. 国家自然科学基金面上项目(31770821)60万,2018-2021; 3. 山东省自然科学基金面上项目(zr2016cm14)18万,2016-2018; 4. 校启动经费200万; 5. 泰山学者科研基金等 |